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Generalizng Fourier Transform to LCA Groups G
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Generalizng Fourier Transform to LCA Groups G

£ _ —2milx
@ Fourier Transform for R: f(&) = /lRf(x)E_v_z dz

e Fourier Transform for G: f / f(x

We take G to be locally compact and abelian/commutative (LCA)

Why do we take conjugate? Just convention.
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The Dual of G

X € {group homomorphisms from G to the complex unit circle}

Imaginary

VAVe call this the dual of G
GZ{XLX%"‘}

Fourier Transform
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Dual-ception

G is currently an abelian group.

Definition (Group Operation on CAJ)
x(z-y) == x(z) - x(y)

If we endow G with the compact-open topology,
it becomes locally compact.

Definition (Compact-Open Topology)

For K C G compact and U C C open, define open sets as
L(K,U) ={x € G: x(K) CU}

Hence, we can define f : G — C, the Fourier Transform off

Fourier Transform
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How to tame Dual-ception

We can easily relate G and G with the continuous group
homomorphism

0:x+ 08, where d,(x)=x(z)
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How to tame Dual-ception

We can easily relate G and G with the continuous group
homomorphism

0:x+ 08, where d,(x)=x(z)

Theorem (Pontryagin Duality)

G = G algebraicly and topologically (everything we care about)
by the map d defined above
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Proof for Continuity of ¢

Q)
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Proof for Continuity of ¢

G
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Proof for Continuity of ¢ (cont.)

@

Pontryagin Duality
[e]e]e] lele)



Proof for Continuity of ¢ (cont.)
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Proof for Continuity of ¢ (cont.)
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Proof for Continuity of ¢ (cont.)
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Proof for Continuity of ¢ (cont.)

G
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Fourier Inversion Formula

Using Pontryagin Duality, we get the Fourier Inversion Formula

f(x) = f(3,1) = /@f(x)x(w) dx

For the Fourier Transform on R, you may have seen this as

f(x) = /R f()ermien ag

Pontryagin Duality
[e]e]e]e]e] )



© Poisson Summation Formula

Poisson Summation Formula
@00000000



One small thing before we continue

We will be taking quotients G/H of our locally compact and
abelian group G, so let’s note some important statements about it.
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One small thing before we continue

We will be taking quotients G/H of our locally compact and
abelian group G, so let’s note some important statements about it.

@ It is abelian.
@ We can endow it with a locally compact topology.

@ For any integrable function f,

/G f()dz = /G/H /H F(xh) dhd(zH)

Define fH(x) fH f(xzh) dh for convenience

Poisson Summation Formula
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Intuition for lterated Integral
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Intuition for lterated Integral
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Short exact sequences

Let H be a subgroup of G
We have the below short sequence
(so 7 injective and ¢ surjective with H mapped to identity)

1—H5G6- 561
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Short exact sequences

Let H be a subgroup of G
We have the below short sequence
(so 7 injective and ¢ surjective with H mapped to identity)

1—H5G6- 561

Definition (Characters of G/H)

X(zH) = x()
This is well defined only when x(h) =1 for h € H
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Short exact sequences

Let H be a subgroup of G
We have the below short sequence
(so 7 injective and ¢ surjective with H mapped to identity)

1—H5G6- 561

Definition (Characters of G/H)

X(zH) = x()
This is well defined only when x(h) =1 for h € H

Hence, we get the short sequence

1—>G/Hq—l>ér—/>ﬁ—>1

Poisson Summation Formula
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Short exact sequence for R

For G =R and H = 7Z, we have the short sequences
1—72-5R-Ls R/Z —1

and .
1— R/Z q—/> R7Z 1

Poisson Summation Formula
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Short exact sequence for R

For G =R and H = Z, we have the short sequences
1—7Z-5R-L R/Z -1

and .
1— R/Z q—/> R7Z 1

It turns out that R = R by i : £ — x¢ where x¢(x) = e2milT
In fact, we identify them using a non-trivial character
Xe(®) = x1(éx)
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Short exact sequence for R

For G =R and H = Z, we have the short sequences
1—7Z-5R-L R/Z -1

and .
1— R/Z q—/> R7Z 1

It turns out that R = R by i : £ — x¢ where x¢(x) = e2milT
In fact, we identify them using a non-trivial character
Xe(®) = x1(éx)

Using this, we can infer R/Z ~ 7 and 7, = R/Z

Poisson Summation Formula
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Poisson Summation Formula

Theorem (Poisson Summation Formula)

/thdh o FO0x(@) dx

For x € O/, FR(x) = T GG )

//H/th z)dhd(xzH)
:/Gfxxw

Thus, FA(x) = f(x) for x € Gy = FA(x) = F(x)| -~




Poisson Summation Formula (cont.)

Proof (cont.)

/ f(xh)dh = f7(z)
H —

A
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Poisson Summation Formula: Special Case

Theorem (Poisson Summation Formula)

/thdh otz ax

Taking x = 1, we get

/f jan= [ foax

Poisson Summation Formula
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Poisson Summation Formula for R

What we have:
o R ]IAQ

R/NZ
/f Jan= [~ f00ax
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Poisson Summation Formula for R

What we have:
o R ]IAQ

R/NZ
/f Jan= [~ f00ax
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Poisson Summation Formula for R

What we have:
o R ]IAQ

R/NZ
/f Jan= [~ f00ax

k) =
Setting G =R and H = 7Z, we get ;Zf( )
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Poisson Summation Formula for R

What we have:
o R ]IAQ

R/NZ
/f Jan= [~ f00ax

k) =
Setting G =R and H = 7Z, we get ;Zf( )

umm... i was promised different?
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Poisson Summation Formula for R

What we have:
° R ]IAQ

/ Fiman= [ £00 dx
Setting G =R and H = 7Z, we get ;Zf(k) - Z\ o)
xe®y

umm... i was promised different? R
Now that we know R = R, let’s redefine R so that R = R.
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Poisson Summation Formula for R

What we have:
o R ]IAQ

R/NZ
/f Jan= [~ f00ax

k) = f
Setting G =R and H = Z, we get sz( ) Z\ 100
EZ R
XE€Y7,
umm... i was promised different? R R
Now that we know R = R, let’s redefine R so that R = R.

Behold )
> fR) =D f(k)
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R is not special

In math, we have no freedom in defining the rational numbers Q.
It is the smallest infinite set containing the integers in which you
can add, subtract, multiply and divide.
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R is not special

In math, we have no freedom in defining the rational numbers Q.
It is the smallest infinite set containing the integers in which you
can add, subtract, multiply and divide.

To define R however, we choose a distance function, namely ||,
and include all the limit points found.
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Consider every possible distance function course!
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Consider every possible distance function course!

Theorem (Ostrowski's Theorem)

All distance functions are characterized by those defined on R and
Qy, for all primes p
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Theorem (Ostrowski's Theorem)

All distance functions are characterized by those defined on R and
Qy, for all primes p

By wishful thinking,
A=Rx [] @

p prime
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Consider every possible distance function course!

Theorem (Ostrowski's Theorem)

All distance functions are characterized by those defined on R and
Qy, for all primes p

By wishful thinking,
A=Rx [] @

p prime

In truth, the best we can have is

A= U Rx [J@ = [[2

finite P C all primes pEP p¢P
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Short exact sequence for A

For G = A and H = Q, we have the short sequences
1—Q -5 AL A/@ —1

and -
1 — A/Q —q/—> A @ —1

It turns out that A = 1& by identifying them using a nowhere
trivial character x¢(x) = x1(£x)

Using this, we can infer A/Q ~ Q and Q = A/Q

Adelic P.S.F.
(o] 1o}



Poisson Summation Formula for A

What we have:
o AA

o Lg=0
o [ sman- o 0
Setting G = A and H = Q, we get ];@f(k) - Z\ f)
XEA/Q

umm... i was promised different?
Now that we know A = A, let's redefine A so that A = A.

Behold .
ST k) =3 f(k)
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Note: | have made no contributions here!

Generously used facts from:

@ Principles of Harmonic Analysis, 2nd Edition, by Anton
Deitmar and Siegfried Echterhoff

o Algebraic Number Theory by Jiirgen Neukirch

Thank you to Dr. Daniel Johnstone for his guidance and
mentorship through learning all this.

Thank you to Dr. Jonathan Peterson for providing me this
opportunity to present.

Thank you to everyone here listening to me ramble.
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