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Generalizng Fourier Transform to LCA Groups G

Fourier Transform for R: f̂(ξ) =
∫
R
f(x) e−2πiξx

︸ ︷︷ ︸
χξ(x)

dx

Fourier Transform for G: f̂(χ) =

∫
G
f(x)χ(x) dx

We take G to be locally compact and abelian/commutative (LCA)

Why do we take conjugate? Just convention.
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The Dual of G

χ ∈ {group homomorphisms from G to the complex unit circle}

We call this the dual of G
Ĝ = {χ1, χ2, · · · }
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Dual-ception

Ĝ is currently an abelian group.

Definition (Group Operation on Ĝ)

χ(x · y) := χ(x) · χ(y)

If we endow Ĝ with the compact-open topology,
it becomes locally compact.

Definition (Compact-Open Topology)

For K ⊆ G compact and U ⊆ C open, define open sets as

L(K,U) = {χ ∈ Ĝ : χ(K) ⊆ U}

Hence, we can define
ˆ̂
f :

̂̂
G → C, the Fourier Transform of f̂
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How to tame Dual-ception

We can easily relate G and
̂̂
G with the continuous group

homomorphism

δ : x 7→ δx where δx(χ) = χ(x)

Theorem (Pontryagin Duality)

G ∼= ̂̂
G algebraicly and topologically (everything we care about)

by the map δ defined above
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Proof for Continuity of δ

̂̂
G
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Proof for Continuity of δ (cont.)

Ĝ
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Proof for Continuity of δ (cont.)

G
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Fourier Inversion Formula

Using Pontryagin Duality, we get the Fourier Inversion Formula

f(x) =
ˆ̂
f(δx−1) =

∫
Ĝ
f̂(χ)χ(x) dχ

For the Fourier Transform on R, you may have seen this as

f(x) =

∫
R
f̂(ξ)e2πiξx dξ
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One small thing before we continue

We will be taking quotients G⧸H of our locally compact and
abelian group G, so let’s note some important statements about it.

It is abelian.

We can endow it with a locally compact topology.

For any integrable function f ,∫
G
f(x) dx =

∫
G⧸H

∫
H
f(xh) dhd(xH)

Define fH(x) =
∫
H f(xh) dh for convenience
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Intuition for Iterated Integral
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Short exact sequences

Let H be a subgroup of G
We have the below short sequence
(so τ injective and q surjective with H mapped to identity)

1 −→ H
τ−−→ G

q−−→ G⧸H → 1

Definition (Characters of Ĝ⧸H)

χ̃(xH) = χ(x)

This is well defined only when χ(h) = 1 for h ∈ H

Hence, we get the short sequence

1 −→ Ĝ⧸H
q′−−→ Ĝ

τ ′−−→ Ĥ → 1
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q′−−→ Ĝ
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Short exact sequence for R

For G = R and H = Z, we have the short sequences

1 −→ Z τ−−→ R q−−→ R⧸Z → 1

and

1 −→ R̂⧸Z
q′−−→ R̂ τ ′−−→ Ẑ → 1

It turns out that R ∼= R̂ by i : ξ 7→ χξ where χξ(x) = e2πiξx

In fact, we identify them using a non-trivial character
χξ(x) = χ1(ξx)

Using this, we can infer R̂⧸Z ∼= Z and Ẑ ∼= R⧸Z
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Introduction Fourier Transform Pontryagin Duality Poisson Summation Formula Adeles Adelic P.S.F. Conclusion



Poisson Summation Formula

Theorem (Poisson Summation Formula)∫
H
f(xh) dh =

∫
Ĝ⧸H

f̂(χ)χ(x) dχ

Proof.

For χ ∈ Ĝ⧸H, f̂H(χ) =

∫
G⧸H

fH(xH)χ(xh) d(xH)

=

∫
G⧸H

∫
H
f(xh)χ(x) dhd(xH)

=

∫
G
f(x)χ(x) dx

Thus, f̂H(χ) = f̂(χ) for χ ∈ Ĝ⧸H ⇐⇒ f̂H(χ) = f̂(χ)
∣∣
Ĝ⧸H
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Poisson Summation Formula (cont.)

Proof (cont.)∫
H
f(xh) dh = fH(x)

=
̂̂
fH(δx−1)

= ̂̂f
∣∣
Ĝ⧸H

(δx−1)

= ̂̂f
∣∣
Ĝ⧸H

(χ)

∴
∫
H
f(xh) dh =

∫
Ĝ⧸H

f̂(χ)χ(x) dχ

Introduction Fourier Transform Pontryagin Duality Poisson Summation Formula Adeles Adelic P.S.F. Conclusion



Poisson Summation Formula: Special Case

Theorem (Poisson Summation Formula)∫
H
f(xh) dh =

∫
Ĝ⧸H

f̂(χ)χ(x) dχ

Taking x = 1, we get∫
H
f(h) dh =

∫
Ĝ⧸H

f̂(χ) dχ
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Poisson Summation Formula for R

What we have:

R ∼= R̂
R̂⧸Z ∼= Z∫
H
f(h) dh =

∫
Ĝ⧸H

f̂(χ) dχ

Setting G = R and H = Z, we get

∑
k∈Z

f(k) =
∑

χ∈R̂⧸Z

f̂(χ)

umm... i was promised different?
Now that we know R ∼= R̂, let’s redefine R̂ so that R = R̂.
Behold ∑

k∈Z
f(k) =

∑
k∈Z

f̂(k)
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Ĝ⧸H

f̂(χ) dχ

Setting G = R and H = Z,

we get

∑
k∈Z

f(k) =
∑

χ∈R̂⧸Z

f̂(χ)

umm... i was promised different?
Now that we know R ∼= R̂, let’s redefine R̂ so that R = R̂.
Behold ∑

k∈Z
f(k) =

∑
k∈Z

f̂(k)

Introduction Fourier Transform Pontryagin Duality Poisson Summation Formula Adeles Adelic P.S.F. Conclusion



Poisson Summation Formula for R

What we have:

R ∼= R̂
R̂⧸Z ∼= Z∫
H
f(h) dh =

∫
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R is not special

In math, we have no freedom in defining the rational numbers Q.
It is the smallest infinite set containing the integers in which you
can add, subtract, multiply and divide.

To define R however, we choose a distance function, namely |·|,
and include all the limit points found.
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So what to do?

Consider every possible distance function course!

Theorem (Ostrowski’s Theorem)

All distance functions are characterized by those defined on R and
Qp for all primes p

By wishful thinking,
A = R×

∏
p prime

Qp

In truth, the best we can have is

A =
⋃

finite P ⊆ all primes

R×
∏
p∈P

Qp ×
∏
p/∈P

Zp


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Short exact sequence for A

For G = A and H = Q, we have the short sequences

1 −→ Q τ−−→ A q−−→ A⧸Q → 1

and

1 −→ Â⧸Q
q′−−→ Â τ ′−−→ Q̂ → 1

It turns out that A ∼= Â, by identifying them using a nowhere
trivial character χξ(x) = χ1(ξx)

Using this, we can infer Â⧸Q ∼= Q and Q̂ ∼= A⧸Q
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Poisson Summation Formula for A

What we have:

A ∼= Â
Â⧸Q ∼= Q∫
H
f(h) dh =

∫
Ĝ⧸H

f̂(χ) dχ

Setting G = A and H = Q, we get

∑
k∈Q

f(k) =
∑

χ∈Â⧸Q

f̂(χ)

umm... i was promised different?
Now that we know A ∼= Â, let’s redefine Â so that A = Â.
Behold ∑

k∈Q
f(k) =

∑
k∈Q

f̂(k)
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Thank you

Note: I have made no contributions here!

Generously used facts from:

Principles of Harmonic Analysis, 2nd Edition, by Anton
Deitmar and Siegfried Echterhoff

Algebraic Number Theory by Jürgen Neukirch

Thank you to Dr. Daniel Johnstone for his guidance and
mentorship through learning all this.

Thank you to Dr. Jonathan Peterson for providing me this
opportunity to present.

Thank you to everyone here listening to me ramble.
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