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Setup

Given: A lattice Λ(B) =
{∑n

i=0 cibi | ci ∈ Z, bi ∈ B
}
and a basis

B = {b0, b1, · · · , bn}
Goal: Find a basis B′ with short orthogonal vectors that generate

the same lattice. (that is Λ(B) = Λ(B′))
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Given: A lattice Λ(B) =
{∑n

i=0 cibi | ci ∈ Z, bi ∈ B
}
and a basis

B = {b0, b1, · · · , bn}
Goal: Find a basis B′ with short orthogonal vectors that generate

the same lattice. (that is Λ(B) = Λ(B′))

This is not possible!
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Gram-Schmidt Orthogonalization

Given a basis B = {b0, b1, · · · , bn}, we find

b∗0 = b0

b∗1 = b1 − µ1,0b
∗
0

b∗2 = b2 − µ2,0b
∗
0 − µ2,1b

∗
1

...

b∗i = bi −
i−1∑
j=0

µi,jb
∗
j

...

b∗n = bn −
n−1∑
j=0

µi,jb
∗
j

with µi,j =
⟨bi,b∗j ⟩
⟨b∗j ,b∗j ⟩

B∗ =
{
b∗0, b

∗
1, · · · , b∗n

}
is a orthogonalized basis of B
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Rounded Gram-Schmidt Orthogonalization

Given a basis B = {b0, b1, · · · , bn}, we find

b′0 = b0

b′1 = b1 − ⌊µ1,0⌉b′0
b′2 = b2 − ⌊µ2,0⌉b′0 − ⌊µ2,1⌉b′1
...

b′i = bi −
i−1∑
j=0

⌊µi,j⌉b′j
...

b′n = bn −
n−1∑
j=0

⌊µi,j⌉b′j

with µi,j =
⟨bi,b∗j ⟩
⟨b∗j ,b∗j ⟩

B′ =
{
b′0, b

′
1, · · · , b′n

}
is a “nearly” orthogonalized basis of B
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Rounded Gram-Schmidt Orthogonalization

Given a basis B = {b0, b1, · · · , bn}, we find

b′0 = b0

b′1 = b1 − ⌊µ1,0⌉b′0
b′2 = b2 − ⌊µ2,0⌉b′0 − ⌊µ2,1⌉b′1
...

b′i = bi −
i−1∑
j=0

⌊µi,j⌉b′j
...

b′n = bn −
n−1∑
j=0

⌊µi,j⌉b′j

with µi,j =
⟨bi,b∗j ⟩
⟨b∗j ,b∗j ⟩

← projection onto ideal orthogonalization!

B′ =
{
b′0, b

′
1, · · · , b′n

}
is a “nearly” orthogonalized basis of B
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The Problem

Consider

b0 =

[
−3
−1

]
, b1 =

[
4
4

]
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The Problem

Consider

b′0 =

[
−3
−1

]
, b′1 =

[
−2
2

]
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The Problem

Consider

b′0 =

[
4
4

]
, b′1 =

[
−3
−1

]
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The Problem

Consider

b′0 =

[
4
4

]
, b′1 =

[
−3
−1

]
Insight: Order Matters
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Langrange Gauss Reduction

1 def lagrange_gauss(L: Matrix) -> Matrix:
2 assert L.nrows() == 2
3 R = copy(L)
4

5 while True:
6 if R[1].norm() < R[0].norm():
7 R[0], R[1] = R[1], R[0]
8

9 mu = round((R[1] * R[0]) /
R[0].norm()^2)↪→

10 if (mu == 0):
11 return R
12 R[1] -= mu*R[0]
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Key Idea

We know two things about our final vectors b′0, b
′
1:∥∥b′0∥∥ ≤∥∥b′1∥∥

⌊ ⟨b
′
0,b

′
1⟩

⟨b′0,b′0⟩
⌉ = 0 =⇒

∣∣∣ ⟨b′0,b′1⟩⟨b′0,b′0⟩

∣∣∣ ≤ 1
2

Using this, we can see that b′0 and b′1 are “nearly” orthogonal!

Let θ denote the angle between b′0 and b′1. Then, since

cos(θ) =
⟨b′0, b′1⟩∥∥b′0∥∥∥∥b′1∥∥ =

⟨b′0, b′1⟩
⟨b′0, b′0⟩

·
∥∥b′0∥∥∥∥b′1∥∥

we get that ∣∣cos(θ)∣∣ ≤ ∣∣∣∣∣⟨b′0, b′1⟩⟨b′0, b′0⟩

∣∣∣∣∣ ·
∥∥b′0∥∥∥∥b′1∥∥ ≤ 1

2
· 1 =

1

2

Hence,
60° ≤ θ ≤ 120°
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Key Ideas

1 We iteratively reduce the first k vectors, k = 0, 1, · · · , n

2 During reduction, we project each vector to the nearest point
of its ideal orthogonalization. (along the line of travel)

3 During swap, we use a different equivalent criteria to stop.

Notice that in the subbasis
{
b′i, b

′
i+1, · · · , b′n

}
b′i = b∗i and bi+1 = b∗i+1 + µi+1,ib

∗
i

Giving us∥∥b′i∥∥2 ≤∥∥b′i+1

∥∥2 ⇐⇒ ∥∥b∗i ∥∥2 ≤∥∥b∗i+1 + µi+1,ib
∗
i

∥∥2
=
∥∥b∗i+1

∥∥+ µ2
i+i,i

∥∥b∗i ∥∥
∴

∥∥b′i∥∥ ≤∥∥b′i+1

∥∥ ⇐⇒ (1− µ2
i+1,i)

∥∥b∗i ∥∥2 ≤∥∥b∗i+1

∥∥2
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Hermite’s Algorithm

1 def hermite(L: Matrix) -> Matrix:
2 n = L.nrows()
3 Q,_ = L.gram_schmidt()
4 def proj(i, j):
5 return (L[i] * Q[j]) / Q[j].norm()^2
6

7 k = 1
8 while k < n:
9 # Reduction Step

10 for j in range(0, k):
11 mu = proj(k, j)
12 if abs(mu) > 0.5:
13 L[k] -= mu.round()*L[j]
14 # Q,_ = L.gram_schmidt() <-- Q is unaffected
15

16 # Conditional Swap Step
17 if Q[k].norm()^2 >= (1 - proj(k, k-1)^2) * Q[k-1].norm()^2:
18 k += 1
19 else:
20 L[k-1], L[k] = L[k], L[k-1]
21 Q, _ = L.gram_schmidt()
22 k = max(k-1, 1)
23

24 return L
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Volume of a Parellepiped

Question: How can we find the volume of a k-parallelepiped whose
vectors live in n-dimensional space?

Notation: V (·) is the function that does this, which takes as input

matrix B =
[
b0 b1 · · · bk

]
If we orthogonalize our vectors, Gram-Schmidt gaurantees volume
would not change. After orthogonalization, our k-parallelepiped is
simply a k-rectangle, whose volume wn can compute!

V (B) =

k∏
i=1

∥∥b∗i ∥∥
Alternatively, if k = n, we also know the formula V (B) =

∣∣det(B)
∣∣

A similar formula exists for k ≤ n as well.

V (B) =
√
det(BTB)
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Our Loss Function

Recall that each subbbasis Bk =
[
b0 b1 · · · bk

]
is lattice

reduced.
We define our loss function as

S(B) :=

n∏
k=1

V (Bk) =

n∏
k=1

k∏
i=1

∥∥b∗i ∥∥
Note: S(·) is always a positive integer
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Termination of Hermite’s Algorithm

Lets see how our Reduction and Swap Step affects S(B)

1 Reduction Step:
for j in range(0, k):

mu = proj(k, j)
if abs(mu) > 0.5:

L[k] -= mu.round()*L[j]
# Q,_ = L.gram_schmidt() <-- Q is unaffected

Since S(·) can be written only in terms on the Gram-Schmidt
orthogonalized vectors, S(B) is unaffected!

2 Swap Step:
V (Bj) is the same for all Bj except Bk−1

S(Bnew)

S(Bold)
=

V (Bnew
k−1)

V (Bold
k−1)

=

∥∥∥b∗k + µk,k−1b
∗
k−1

∥∥∥∥∥∥b∗k−1

∥∥∥ <
√
1 = 1

Thus, S(Bnew) < S(Bold)

Since, S(·) ⊆ N, by Well Ordering, S must terminate!
Open Problem: Proving Hermite’s algorithm is polynomially bound
If we fix the dimension, then we do know it is polynomially bound!
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LLL Algorithm

1 def lll(L: Matrix, delta: float) -> Matrix:
2 assert 0.25 <= delta < 1
3 n = L.nrows()
4 Q,_ = L.gram_schmidt()
5 def proj(i, j):
6 return (L[i] * Q[j]) / (Q[j] * Q[j])
7

8 k = 1
9 while k < n:

10 # Reduction Step
11 for j in range(0, k):
12 mu = proj(k, j)
13 if abs(mu) >= 0.5:
14 L[k] -= mu.round()*L[j]
15 # Q,_ = L.gram_schmidt() <-- Q is unaffected
16

17 # Conditional Swap Step
18 if Q[k].norm()^2 >= (delta - proj(k, k-1)^2) * Q[k-1].norm()^2:
19 k += 1
20 else:
21 L[k-1], L[k] = L[k], L[k-1]
22 Q, _ = L.gram_schmidt()
23 k = max(k-1, 1)
24

25 return L
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Termination of LLL Algorithm

Lets see how our Reduction and Swap Step affects S(B)

1 Reduction Step:
Since S(·) can be written only in terms on the Gram-Schmidt
orthogonalized vectors, S(B) is unaffected!

2 Swap Step:
if Q[k].norm()^2 >= (delta - proj(k, k-1)^2) * Q[k-1].norm()^2:

k += 1
else:

L[k-1], L[k] = L[k], L[k-1]
Q, _ = L.gram_schmidt()
k = max(k-1, 1)

V (Bj) is the same for all Bj except Bk

S(Bnew)

S(Bold)
=

V (Bnew
k )

V (Bold
k )

=

∥∥∥b∗k+1 + µk+1,kb
∗
k

∥∥∥∥∥b∗k∥∥ <
√
δ

Thus, S(Bnew) <
√
δS(Bold)

When δ < 1, we are gauranteed LLL is polynomially bound!
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Shortest Vector Problem

Let λ(B) denote the shortest vector in Λ(B)

Lemma

There exists b∗i ∈ B∗ such that
∥∥b∗i ∥∥ ≤∥∥λ(B)

∥∥
Proof.

Since λ(B) is generated by B, λ(B) =
∑n

i=1 cibi where ci ∈ Z
Let m ∈ {1, · · · , n} be the largest integer such that cm ̸= 0. Thus,

λ(B) =

m∑
i=1

cibi =

m∑
i=1

ci

i∑
j=1

µi,jb
∗
j = cmb∗m +

m−1∑
j=1

αib
∗
j

Thus, ∥∥λ(B)
∥∥2 = c2m

∥∥b∗m∥∥2 + m−1∑
j=1

∥∥∥αib
∗
j

∥∥∥2 ≥ c2m
∥∥b∗m∥∥2

Since cm ∈ Z, we have
∥∥λ(B)

∥∥2 ≥ c2m∥b∗m∥
2 ≥∥b∗m∥

2

Hence, ∥b∗m∥ ≤
∥∥λ(B)

∥∥
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Shortest Vector Problem

Theorem ∥∥b′0∥∥ ≤ (
4

4δ − 1

)n/2∥∥λ(B)
∥∥

Proof.

Due to the ordering condition, we know∥∥b′0∥∥2 =∥∥b∗0∥∥2 ≤ ∥∥b∗1∥∥2
δ − µ2

1,0

≤ · · · ≤
∥∥b∗i ∥∥2∏i

k=1(δ − µ2
k,k−1)

Since 1 ≤ 1
δ−µ2

k,k−1
≤ 1

δ−( 1
2)

2 = 4
4δ−1 ,

∥∥b′0∥∥2 ≤ ∥∥b∗i ∥∥2∏n
k=1(δ − µ2

k,k−1)
≤

(
4

4δ − 1

)n∥∥b∗i ∥∥2 ∀i ∈ {1, · · · , n}
Hence, by the previous lemma,

∥∥b′0∥∥ ≤ (
4

4δ−1

)n/2∥∥λ(B)
∥∥
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Thank you

Generously used facts, examples, and code from:

Factoring Polynomials with Rational Coefficients by Arjen
Lenstra, Hendrik Lenstra and László Lovász

LLL Algorithm for Lattice Basis Reduction by Alex Kalbach,
Ted Chinburg

The optimal LLL algorithm is still polynomial in fixed
dimension by Ali Akhavi

Understanding the LLL Lattice Basis Reduction Algorithm by
Julian D’Costa

Building Lattice Reduction (LLL) Intuition by Kelby Ludwig

Thank you for listening to me ramble.

Introduction Orthogonalization Hermite Measuring Reduction LLL Cryptographic Applications Conclusion

https://julianrdcosta.com/understanding-the-lll-lattice-basis-reduction-algorithm/
https://kel.bz/post/lll/
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