LLL Algorithm

Pranav Setpal

Purdue University

December 4, 2025

Introduction
@00

@ Orthogonalization
© Hermite

© Measuring Reduction

QLLL

e Cryptographic Applications

Introduction
oeo

Given: A lattice A(B) = {37 j¢cibi | ¢; € Z,b; € B} and a basis
B = {bg, b1, ,by}

Goal: Find a basis B’ with short orthogonal vectors that generate
the same lattice. (that is A(B) = A(B’))

Introduction
ooe

Given: A lattice A(B) = {31 cibi | ¢; € Z,b; € B} and a basis
B - {b07b17“' ;bn}

Goal: Find a basis B’ with short orthogonal vectors that generate
the same lattice. (that is A(B) = A(B’))
This is not possible! *

by

-10 -5 b, 5 10

-10 4

Introduction
ooe

Given: A lattice A(B) = {37 j¢cibi | ¢; € Z,b; € B} and a basis
B = {bg, b1, ,by}
Goal: Find a basis B’ with short “nearly” orthogonal vectors that
generate the same lattice. (that is A(B) = A(B'))

Introduction
ooe

@ Orthogonalization

Orthogonalization
[lelelee]e)

Gram-Schmidt Orthogonalization

Given a basis B = {bg, b1, - ,b,}, we find
b = bo
bl = b1 — p1,0bg
by = by — po,0by — p12,107

Zum ;
_b _Zuz,j '

. (bi,b%)
with pij =)

B* = {b},b},--- bl } is a orthogonalized basis of B

Orthogonalization
(o] lelelele)

Rounded Gram-Schmidt Orthogonalization

Given a basis B = {bg, b1, - ,b,}, we find
" =b
o = bo
by = b1 — 1,010
by = by — p2,01bh — L1210

i—1

by =bi — Y |pisb]

=0
' n—1

By =bn— YLy

n YN /"LZJ]
§=0

. (bi,b%)
with pij = e p)

B’ = {bp,by,--- ,b],} is a “nearly” orthogonalized basis of B

Orthogonalization
[e]e] lelele)

Rounded Gram-Schmidt Orthogonalization

Given a basis B = {bg, b1, - ,b,}, we find
" =b
o = bo
by = b1 — 1,010
by = by — p2,01bh — L1210
: i—1

by =bi — Y |pisb]

Jj=0

: n—1
By =bn— YLy 10
=0

ith 1 = obi) jection onto ideal orthogonalization!
Wi Mi 5 = W <— projection onto I1dea ort ogona 1zation!

B’ = {bp,by,--- ,b],} is a “nearly” orthogonalized basis of B

Orthogonalization
[e]e] lelele)

The Problem

Consider

by

. T r T T T T
—a -3 -2 1 2 3 4

Orthogonalization
[e]e]e] lele)

The Problem

Consider

by

-3 -2
o= 5] =[]

The Problem

Consider

by

. T T r T T T T
—a -3 -2 1 2 3 4

Orthogonalization
[e]e]e] lele)

The Problem

Consider

by

. T T r T T T T
—a -3 -2 1 2 3 4

4 -3
o=lif =[]

The Problem

Consider

bu

. T T T T - T T
—4 -3 -2 1 2 3 4
by

Insight: Order Matters

Orthogonalization
[e]e]e] lele)

Langrange Gauss Reduction

1 def lagrange_gauss(L: Matrix) -> Matrix: o bo
2 assert L.nrows() ==
3 R = copy(L) 3
4
5 while True: 7
6 if R[1].norm() < R[0].norm(): .
7 R[0], R[1] = R[1], R[O]
8 —4 -3 -2 1 2 3 4
9 mu = round((R[1] * R[0]) / by

— R[0].norm()"2) ™
10 if (mu == 0): -2
11 return R
12 R[1] -= mu*R[0] 7

]

Orthogonalization
0000e0

Langrange Gauss Reduction

1 def lagrange_gauss(L: Matrix) -> Matrix: 4

2 assert L.nrows() ==

3 R = copy(L)]

4 b 2]

5 while True:

6 if R[1].norm() < R[O].norm(): 19

7 R[0], R[1] = R[11, R[O]

8 -4 3 -2 1 2 3 4

9 mu = round((R[1] * R[0]) / by

— R[0] .norm()"2)

10 if (mu == 0): -2

11 return R

12 R[1] -= mu*R[0] 7
4]

Orthogonalization
[e]e]ele] o)

We know two things about our final vectors b{), b}:

LA RSA|
o Lkl =0 = |G| <

Using this, we can see that bf, and b} are “nearly” orthogonal!

Orthogonalization
00000e

We know two things about our final vectors b{), b}:

o el <]
* Lagay] =0 = |atmp| <3

Using this, we can see that bf, and b} are “nearly” orthogonal!
Let 6 denote the angle between bf, and b}. Then, since

(b, 01) (b, b1) (|06]

cos(f) = =
[Boll[[ea]] (b6, 06) |[B4]
we get that W) Hb' H . .
0O <\ | ol <2712
Hence,

60° <6 <120°

Orthogonalization
00000e

© Hermite

Hermite
@00

@ We iteratively reduce the first k vectors, k =0,1,--- ,n

Hermite
oeo

@ We iteratively reduce the first k vectors, k =0,1,--- ,n

@ During reduction, we project each vector to the nearest point
of its ideal orthogonalization. (along the line of travel)

Hermite
oeo

@ We iteratively reduce the first k vectors, k =0,1,--- ,n

@ During reduction, we project each vector to the nearest point
of its ideal orthogonalization. (along the line of travel)

© During swap, we use a different equivalent criteria to stop.

Notice that in the subbasis {b’ ARPRERIN

b = b} and b1 = by + pit1,:;
Giving us

B[P <[ball® = 0517 <lben + i |
_Hbl+1 | +/1’12+11Hb*”
sl <l = 0 mdaaller])” <)

Hermite's Algorithm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

def hermite(L: Matrix) -> Matrix:
n = L.nrows()
Q,_ = L.gram_schmidt ()
def proj(i, j):
return (L[i] * Q[j1) / Q[j].norm()"2

k=1
while k < n:
Reduction Step
for j in range(0, k):
mu = proj(k, j)
if abs(mu) > 0.5:
L[k] -= mu.round()*L[j]
Q,_ = L.gram_schmidt() <-- @ is unaffected

Conditional Swap Step
if Q[k].norm()"2 >= (1 - proj(k, k-1)"2) * Q[k-1] .norm()"2:

k += 1
else:
L[k-1], L[k] = L[k], L[k-1]
Q, _ = L.gram_schmidt ()

k = max(k-1, 1)

return L

Hermite
ooe

© Measuring Reduction

Measuring Reduction
[leJele]

Volume of a Parellepiped

Question: How can we find the volume of a k-parallelepiped whose
vectors live in n-dimensional space?

Notation: V(-) is the function that does this, which takes as input
matrix B = [b() by --- bk}

If we orthogonalize our vectors, Gram-Schmidt gaurantees volume
would not change. After orthogonalization, our k-parallelepiped is
simply a k-rectangle, whose volume wn can compute!

k
= LTI
i=1

Alternatively, if £ = n, we also know the formula V(B ‘det |
A similar formula exists for £ < n as well.

V(B) = \/det(BTB)

Measuring Reduction
[e] Tele]

Our Loss Function

Recall that each subbbasis Bj, = [bo by - bk} is lattice

reduced.
We define our loss function as

n k

[Tvy =TI11I
k=1

k=11=1

S(B) :

Note: S(-) is always a positive integer

Measuring Reduction
[e]e] o]

Termination of Hermite's Algorithm

Lets see how our Reduction and Swap Step affects S(B)
© Reduction Step:

for j in range(0, k):
mu = proj(k, j)
if abs(mu) > 0.5:
L[k] -= mu.round()*L[j]
Q,_ = L.gram_schmidt() <-- @ is unaffected

Since S(-) can be written only in terms on the Gram-Schmidt
orthogonalized vectors, S(B) is unaffected!

Measuring Reduction
[e]e]e]]

Termination of Hermite's Algorithm

Lets see how our Reduction and Swap Step affects S(B)
@ Reduction Step:
Since S(-) can be written only in terms on the Gram-Schmidt
orthogonalized vectors, S(B) is unaffected!
@ Swap Step:

if Q[k].norm()"2 >= (1 - proj(k, k-1)"2) * Q[k-1].norm()"2:
k += 1
else:
L[k-1], L[k] = L[k], L[k-1]
Q, _ = L.gram_schmidt()
k = max(k-1, 1)

V(B;j) is the same for all B; except Bj_;
S(Brv) V(Bp) ’sz + pk,k—1b 4
S(BY) V(B ‘

Thus, S(B"™) < S(B°)

H<f1:1

*
b

Measuring Reduction
[e]e]e]]

Termination of Hermite's Algorithm

Lets see how our Reduction and Swap Step affects S(B)
© Reduction Step:

Since S(-) can be written only in terms on the Gram-Schmidt
orthogonalized vectors, S(B) is unaffected!

@ Swap Step:
V(B;j) is the same for all B; except Bj_;
S(Brevy V(BRY) ku + e k-1bf H
oldy — old y .
S(B%) ~ V(BgH,) b

<V1=1

Thus, S(B™) < S(B°)

Measuring Reduction
[e]e]e]]

Termination of Hermite's Algorithm

Lets see how our Reduction and Swap Step affects S(B)

© Reduction Step:
Since S(-) can be written only in terms on the Gram-Schmidt
orthogonalized vectors, S(B) is unaffected!
@ Swap Step:
V(B;j) is the same for all B; except Bj_;
S(Bnew) B V(B,’C‘e;"‘{) B Hb}; + 'uk’k_lbzle

= = <Vi=1
old old "
S(B) ~ V(B b

Thus, S(B™) < S(B°)
Since, S(-) € N, by Well Ordering, S must terminate!

Measuring Reduction
[e]e]e]]

Termination of Hermite's Algorithm

Lets see how our Reduction and Swap Step affects S(B)

© Reduction Step:
Since S(-) can be written only in terms on the Gram-Schmidt
orthogonalized vectors, S(B) is unaffected!
@ Swap Step:
V(B;j) is the same for all B; except Bj_;
S(Bnew) B V(B,’C‘e;"‘{) B Hb}; + 'uk’k_lbzle

= = 1=1
S(BM) — v(BM)) bZ—IH <V

Thus, S(B™) < S(B°)

Since, S(-) € N, by Well Ordering, S must terminate!
Open Problem: Proving Hermite's algorithm is polynomially bound
If we fix the dimension, then we do know it is polynomially bound!

Measuring Reduction
[e]e]e]]

QLLL

LLL Algorithm

1
2
3
4

© 00 N DG

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

def 111(L: Matrix, delta: float) -> Matrix:

assert 0.25 <= delta < 1
n = L.nrows()
Q,_ = L.gram_schmidt ()
def proj(i, j):
return (L[i] * Q[j1) / (QC31 = Q[31)

k=1
while k < n:
Reduction Step
for j in range(0, k):
mu = proj(k, j)
if abs(mu) >= 0.5:
L[k] -= mu.round()*L[j]
Q,_ = L.gram_schmidt() <-- @ is unaffected

Conditional Swap Step
if Q[k] .norm()"2 >= (delta - proj(k, k-1)"2) * Q[k-1] .norm()"~2:

k += 1

else:
L[k-1], L[k] = L[k], L[k-1]
Q, _ = L.gram_schmidt ()

k = max(k-1, 1)

return L

LLL
(o] Ie}

Termination of LLL Algorithm

Lets see how our Reduction and Swap Step affects S(B)

© Reduction Step:
Since S(-) can be written only in terms on the Gram-Schmidt
orthogonalized vectors, S(B) is unaffected!

@ Swap Step:

if Q[k].norm()"2 >= (delta - proj(k, k-1)"2) * Q[k-1].norm()"2:
k += 1
else:
L[k-1], L[k] = L[k], L[k-1]
Q, _ = L.gram_schmidt ()
k = max(k-1, 1)

V(Bj) is the same for all B; except By,
s v [P+ e
S(B) — v(BRY) (ol
Thus, S(B"™) < v/§S(B°)
When § < 1, we are gauranteed LLL is polynomially bound!

LLL
[ole }

<6

e Cryptographic Applications

Cryptographic Applications
@00

Shortest Vector Problem

Let A(B) denote the shortest vector in A(B)

There exists b} € B* such that ||b}|| <||A(B)|

Since \(B) is generated by B, A(B) = >_7"; ¢;b; where ¢; € Z

Let m € {1,--- n} be the Iargest integer such that cm ;é 0. Thus,
= Zczbl —chz,u”b =cpb}, + Z alb*
Thus, = =
IAB)* = culoinll” + Z]| 2 o
Since ¢, € Z, we have | A(B H > 2 |6 |12 > 6%, |17
Hence, ||b),]| < ||)\(B)H O

v

Cryptographic Applications
000

Shortest Vector Problem
. 4 n/2
Il < (=) Il

Due to the ordering condition, we know

12

il = o < A <. < — 1]

M1,0 - (6 - Mi,k—l)
- 1 1 4
Since 1 < s < () BT
il ¢\

by H <<) bEI° v 1o,
I < gl < () P vie e)
Hence, by the previous lemma, ||bj|| < (45 1) H)\ | O

Cryptographic Applications
ooe

Generously used facts, examples, and code from:
@ Factoring Polynomials with Rational Coefficients by Arjen
Lenstra, Hendrik Lenstra and Laszl6é Lovasz

o LLL Algorithm for Lattice Basis Reduction by Alex Kalbach,
Ted Chinburg

@ The optimal LLL algorithm is still polynomial in fixed
dimension by Ali Akhavi

@ Understanding the LLL Lattice Basis Reduction Algorithm by
Julian D'Costa

@ Building Lattice Reduction (LLL) Intuition by Kelby Ludwig

Thank you for listening to me ramble.

Conclusion
[]

https://julianrdcosta.com/understanding-the-lll-lattice-basis-reduction-algorithm/
https://kel.bz/post/lll/

	Introduction
	Orthogonalization
	Hermite
	Measuring Reduction
	LLL
	Cryptographic Applications
	Conclusion

